Low ensemble disorder in quantum well tube nanowires.

نویسندگان

  • Christopher L Davies
  • Patrick Parkinson
  • Nian Jiang
  • Jessica L Boland
  • Sonia Conesa-Boj
  • H Hoe Tan
  • Chennupati Jagadish
  • Laura M Herz
  • Michael B Johnston
چکیده

We have observed very low disorder in high quality quantum well tubes (QWT) in GaAs-Al(0.4)Ga(0.6)As core-multishell nanowires. Room-temperature photoluminescence spectra were measured from 150 single nanowires enabling a full statistical analysis of both intra- and inter-nanowire disorder. By modelling individual nanowire spectra, we assigned a quantum well tube thickness, a core disorder parameter and a QWT disorder parameter to each nanowire. A strong correlation was observed between disorder in the GaAs cores and disorder in the GaAs QWTs, which indicates that variations in core morphology effectively propagate to the shell layers. This highlights the importance of high quality core growth prior to shell deposition. Furthermore, variations in QWT thicknesses for different facet directions was found to be a likely cause of intra-wire disorder, highlighting the need for accurate shell growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conductance of disordered semiconducting nanowires and carbon nanotubes: a chain of quantum dots

A comparative study of the low temperature conductivity of an ensemble of multiwall carbon nanotubes and semiconductor nanowires is presented. The quasi one‐dimensional samples are made in nanoporous templates by electrodeposition and CVD growth. Three different structures are studied in parallel: multiwall carbon nanotubes, tellurium nanowires,...

متن کامل

Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes.

We use low-temperature photoluminescence, photoluminescence excitation, and photoluminescence imaging spectroscopy to explore the optical and electronic properties of GaAs/AlGaAs quantum well tube (QWT) heterostructured nanowires (NWs). We find that GaAs QWTs with widths >5 nm have electronic states which are delocalized and continuous along the length of the NW. As the NW QWT width decreases f...

متن کامل

Superconducting Nanowire Single photon detector (SNSPD) for Quantum Information

In the beginning of this century, a new type of detector, superconducting nanowire single photon detector (SNSPD or SSPD) joined the family of superconducting sensors and detectors. Soon, it has been turning to be one of the most important players in this family since it surpasses the semiconducting single photon detectors (APD: avalanche photodiode and PMT: photo multiplier tube) with many adv...

متن کامل

Carrier Localization Effects in InGaN/GaN Multiple-Quantum-Wells LED Nanowires: Luminescence Quantum Efficiency Improvement and “Negative” Thermal Activation Energy

Two-dimensional InGaN/GaN multiple-quantum-wells (MQW) LED structure was nanotextured into quasi-one-dimensional nanowires (NWs) with different average diameters with a combination approach of Ni nanoislands as mask + dry etching. Such nanotexturing bring out several appealing effects including deeper localization of carriers and significant improvement in quantum efficiency (e.g., from 4.76% o...

متن کامل

Investigation of strong force influence on behavior of nuclear energy levels in Calcium and Titanium isotopes: Based on quantum chaos theory

The atomic nucleus is a complex many-body system that consists of two types of fermion (neutron and proton). They are in the strong interaction. The statistical properties of energy levels and influence of strong force between these fermions are well described by random matrix theory. Resonance of energy levels depends on the Hamiltonian symmetry placed in one of the GOE, GUE and GSE ensembles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 48  شماره 

صفحات  -

تاریخ انتشار 2015